A computational scheme to estimate the Leontief model matrix coefficients according to input-output table data for the southern regions of the Tyumen Oblast
Denis A. GOVORKOVTyumen Scientific Centre of Siberian Branch of Russian Academy of Sciences, Tyumen, Russian Federation dagovorkov@mail.ru ORCID id: not available
Il'ya G. SOLOV'EVTyumen Scientific Centre of Siberian Branch of Russian Academy of Sciences, Tyumen, Russian Federation solovyev@ikz.ru ORCID id: not available
Vladimir R. TSIBUL'SKIITyumen Scientific Centre of Siberian Branch of Russian Academy of Sciences, Tyumen, Russian Federation v-tsib@yandex.ru ORCID id: not available
Subject. This article deals with the control and management aspects of regional development on the basis of Leontief’s balance model. Objectives. The article aims to develop schemes for stable estimation of aggregate parameters of region balance models based on a shortened sample of input-output statistical data and rules for their subsequent regularization. Methods. For the study, we used multiple forms of regional economic balance model transformation based on the aggregation of data of the selected regional subsystems. Results. The primary estimates of aggregate input-output matrix for the southern regions of the Tyumen Oblast were obtained from the statistical input-output data for 2014–2018. To comply with the productivity conditions, additional information was introduced into the estimation algorithm reflecting the balance dependence for the reference input-output matrix for the Russian Federation and for the southern regions of the Tyumen Oblast in retrospective (2004–2013). Conclusions. The result of regularization of aggregate input-output matrix for the southern regions of the Tyumen Oblast obtained from the statistical input-output data on the basis of the least squares method indicates that the backward estimation technique cannot act as a basic tool for the primary construction of balance models of regional economies. However, backward estimation algorithms with subsequent regularization are effective in correcting the reference input-output matrix using actual data of the region’s socio-economic development.
Keywords: input-output balance, Leontief model, matrix of input-output coefficients
References:
Okhlopkov G.N. [A systems-based approach to forecasting gross regional product using the inter-industry balance model]. Regional'naya ekonomika: teoriya i praktika = Regional Economics: Theory and Practice, 2020, vol. 18, iss. 8, pp. 1602–1614. (In Russ.) URL: Link
Myakshin V.N. [Inter-industry balance as a tool to develop a regional investment strategy]. Regional'naya ekonomika: teoriya i praktika = Regional Economics: Theory and Practice, 2013, vol. 11, iss. 30, pp. 37–46. URL: Link (In Russ.)
Mashunin Yu.K., Mashunin I.A. [Organization of management, modeling and forecasting of development of economy of the region]. Regional'naya ekonomika i upravlenie: elektronnyi nauchnyi zhurnal, 2016, no. 1, pp. 29–58. (In Russ.) URL: Link
Balatskii O.F., Belyshev D.V., Gurman V.I. et al. Modelirovanie sotsio-ekologo-ekonomicheskoi sistemy regiona [Modeling of a socio-ecological-economic system of the region]. Moscow, Nauka Publ., 2001, 175 p.
Kilin P.M. [Regional model of interindustry balance and surplus value in open national economy]. Regional'naya ekonomika i upravlenie: elektronnyi nauchnyi zhurnal, 2016, no. 4, pp. 676–688. (In Russ.) URL: Link
Dondokov Z.B.-D., Dyrkheev K.P., Munaev L.A. et al. [An inter-industry analysis of the economy of the Republic of Buryatia on the basis of input-output tables]. Regional'naya ekonomika: teoriya i praktika = Regional Economics: Theory and Practice, 2014, vol. 12, iss. 28, pp. 55–62. URL: Link (In Russ.)
Duszynski R.R., Toroptsev E.L., Marakhovskii A.S. [Static stability and dynamic properties of macroeconomic systems]. Regional'naya ekonomika: teoriya i praktika = Regional Economics: Theory and Practice, 2016, vol. 14, iss. 6, pp. 67–80. URL: Link (In Russ.)
Baeva N.B. [Models and methods of the composite trajectory of the regional social and economic system balanced growth]. Sovremennaya ekonomika: problemy i resheniya = Modern Economics: Problems and Solutions, 2016, no. 5, pp. 8–21. URL: Link (In Russ.)
Dabiev D.F. [About the inter-sectoral analysis of the economy of the Republic of Tyva]. Finansovaya ekonomika = Financial Economy, 2019, no. 8, pp. 348–352. (In Russ.)
Rao C.R. Lineinye statisticheskie metody i ikh primeneniya [Linear Statistical Inference and its Applications]. Moscow, Nauka Publ., 1968, 547 p.
Forsythe G.E., Moler C.B. Chislennoe reshenie sistem lineinykh algebraicheskikh uravnenii [Computer Solution of Linear Algebraic Systems]. Moscow, Mir Publ., 1969, 166 p.
Alifanov O.M., Artyukhin E.A., Rumyantsev S.V. Ekstremal'nye metody resheniya nekorrektnykh zadach i ikh prilozheniya k obratnym zadacham teploobmena [Extreme methods of solving incorrect problems and their application to inverse heat transfer problems]. Moscow, Nauka Publ., 1988, 285 p.
Shirnaeva S.Yu. [Peculiarities of the system of simultaneous equations for modeling the stabilization processes in the RF economy]. Vestnik Samarskogo gosudarstvennogo ekonomicheskogo universiteta = Vestnik of Samara State University of Economics, 2009, no. 5, pp. 138–142. URL: Link (In Russ.)
Kiiashchenko T.A. [Up-to-date regional regional assessment of the gross regional product in the Russian Federation]. Regional'naya ekonomika: teoriya i praktika = Regional Economics: Theory and Practice, 2014, vol. 12, iss. 23, pp. 52–57. URL: Link (In Russ.)
Leontief W.W. Mezhotraslevaya ekonomika [Input-output economics]. Moscow, Ekonomika Publ., 1997, 480 p.