Economic Analysis: Theory and Practice

Abstracting and Indexing

Referativny Zhurnal VINITI RAS
Google Scholar

Online available



Cyberleninka (24 month OA embargo)

Descriptive, predictive, and prescriptive analytics: Data, methods, and algorithms

Vol. 18, Iss. 3, MARCH 2019

Received: 15 January 2019

Received in revised form: 22 January 2019

Accepted: 31 January 2019

Available online: 29 March 2019


JEL Classification: G30, G32

Pages: 447–461

Kogdenko V.G. National Research Nuclear University MEPhI, Moscow, Russian Federation

Subject The article addresses data, methods and algorithms for descriptive, predictive, and prescriptive analysis.
Objectives The purpose of the study is to identify trends in the development of business analysis and summarize characteristics of descriptive characteristics, predictive, and prescriptive analysis.
Methods The methodological basis draws on general scientific principles and research methods, like analysis and synthesis, grouping and comparison, abstraction, generalization.
Results I investigated trends in the development of business analysis, revealed modern characteristics of descriptive analysis, offered an algorithm for predictive analysis, underpinned universal financial models of company profit and cash flow for prognostic analysis, reflecting the factors of business portfolio formation and created value distribution. The paper considers trends in the prescriptive analytics development and identifies four blocks: client analytics, industrial analytics, staff analytics, ecosystem and business environment analytics. It also analyzes sources of improving the company efficiency as a result of applying the methods of prescriptive analysis.
Conclusions The article may be useful for specialists of analytical services of companies.

Keywords: descriptive analytics, predictive analytics, prescriptive analytics


  1. Siegel E. Proschitat' budushchee. Kto kliknet, kupit, sovret ili umret [Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die]. Moscow, Al'pina Pablisher Publ., 2018, 374 p.
  2. Davenport T., Kim Jinho. O chem govoryat tsifry. Kak ponimat' i ispol'zovat' dannye [Keeping Up with the Quants: Your Guide to Understanding and Using Analytics]. Moscow, Mann, Ivanov i Ferber Publ., 2014, 224 p.
  3. Hanke J.E., Wichern D.W. Biznes-prognozirovanie [Business Forecasting]. Moscow, Vil'yams Publ., 2017, 656 p.
  4. Carlberg C. Biznes-analiz s ispol'zovaniem Excel [Business Analysis: Microsoft Excel 2010]. Moscow, Vil'yams Publ., 2017, 576 p.
  5. Zharov D. Finansovoe modelirovanie v Excel [Financial Modeling in Excel]. Moscow, Al'pina Biznes Buks Publ., 2008, 170 p.
  6. Agapova T.N., Osipova K.N. [The system-economic logic of building a system of indicators to assess enterprise activities]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2005, no. 7, pp. 2–7. URL: Link (In Russ.)
  7. Brealey R., Myers S. Printsipy korporativnykh finansov [Principles of Corporate Finance]. Moscow, Olimp-Biznes Publ., 2015, 1008 p.
  8. Costantini P. Analiz effektivnosti investitsii metodom CROCI – opyt vedushchikh kompanii [Cash Return on Capital Invested: Ten Years of Investment Analysis with the CROCI Economic Profit Model]. Moscow, Vershina Publ., 2007, 288 p.
  9. Bernstein L.A., Wild J. Analiz finansovoi otchetnosti: teoriya, praktika i interpretatsiya [Analysis of Financial Statements]. Moscow, Finansy i statistika Publ., 2003, 622 p.
  10. Lyubushin N.P., Babicheva N.E., Igoshev A.K., Kondrashova N.V. [Modeling the sustainable development of different hierarchical level economic systems based on a resource-oriented approach]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2015, no. 48, pp. 2–12. URL: Link (In Russ.)
  11. Copeland T., Koller T., Murrin J. Stoimost' kompanii: otsenka i upravlenie [Valuation: Measuring and Managing the Value of Companies]. Moscow, Olimp-Biznes Publ., 2005, 576 p.
  12. Damodaran A. Investitsionnaya otsenka: instrumenty i metody otsenki lyubykh aktivov [Investment Valuation: Tools and Techniques for Determining the Value of Any Asset]. Moscow, Al'pina Pablisher Publ., 2018, 1316 p.
  13. Antill N., Lee K. Otsenka kompanii: analiz i prognozirovanie s ispol'zovaniem otchetnosti po MSFO [Company Valuation under IFRS: Interpreting and Forecasting Accounts Using International Financial Reporting Standards]. Moscow, Al'pina Pablisher Publ., 2013, 440 p.
  14. Lyubushin N.P., Babicheva N.E., Lylov A.I. [Use of resource oriented economical analysis in estimation of stable development of managing subjects]. Vestnik Tambovskogo universiteta. Ser.: Gumanitarnye nauki = Tambov University Review. Series: Humanities, 2015, iss. 2, pp. 32–45. URL: Link (In Russ.)
  15. Kaplan R.S., Norton D.P. Sbalansirovannaya sistema pokazatelei. Ot strategii k deistviyu [The Balanced Scorecard: Translating Strategy into Action]. Moscow, Olimp-Biznes Publ., 2005, 320 p.
  16. Mayer-Schönberger V., Cukier K. Bol'shie dannye. Revolyutsiya, kotoraya izmenit to, kak my zhivem, rabotaem i myslim [Big Data: A Revolution That Will Transform How We Live, Work, and Think]. Moscow, Mann, Ivanov i Ferber Publ., 2014, 156 p.
  17. Bruskin S.N. [Models and tools of predicting analytical research for digital corporation]. Vestnik Rossiiskogo ekonomicheskogo universiteta imeni G.V. Plekhanova = Vestnik of Plekhanov Russian University of Economics, 2017, no. 5, pp. 135–139. URL: Link (In Russ.)

View all articles of issue


ISSN 2311-8725 (Online)
ISSN 2073-039X (Print)

Journal current issue

Vol. 19, Iss. 6
June 2020