+7 495 989 9610, 9am6pm (GMT+3), Monday – Friday
ИД «Финансы и кредит»






Economic Analysis: Theory and Practice

Social and economic development of the Syrian Arab Republic during the pre-crisis period: A retrospective analysis

Vol. 16, Iss. 7, JULY 2017

Received: 23 June 2017

Received in revised form: 5 July 2017

Accepted: 13 July 2017

Available online: 27 July 2017


JEL Classification: J21, J31, О11, О53

Pages: 1231–1248


Kuznetsov Yu.A. National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation

Perova V.I. National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation

Waddah Al Jarad. c National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation

Subject The article reviews the specifics of economic development of the Syrian Arab Republic during the pre-crisis period.
Objectives The purpose of the study is to analyze and describe trends in the economic development of the Syrian Arab Republic to define its actual economic situation during the pre-crisis period and prospects for economic advancement and social progress of the entire country and its certain provinces subject to peaceful development.
Methods We employ neural simulation based on indicators characterizing the economic condition of the country as a whole and its certain provinces. The research tools include self-organizing maps based on Deductor analytical platform.
Results The paper reveals major trends in GDP, focuses on economic restructuring of the Syrian Arab Republic. Based on five indicators of economic activity of provinces in the private sector, we performed a cluster analysis of their development. It shows that in 2007–2010, fourteen provinces were divided into three groups (clusters). We describe the composition and characteristics of each cluster, show changes in indicators of province development by clusters. The forecast for 2011–2017 is quite optimistic as long as peace is maintained.
Conclusions and Relevance The revealed specific features of socio-economic status of the Syrian Arab Republic before 2011 are indicative of unrealized opportunities for the country's economy since then.

Keywords: socio-economic status, neural network, Deductor


  1. Krylov A.V. [The religious factor in the 'Arab Spring']. Vestnik MGIMO-Universiteta = MGIMO-University Bulletin, 2013, no. 4, pp. 43–52. (In Russ.)
  2. Krylov A.V., Fedorchenko A.V. Mnogovariantnyi prognoz razvitiya situatsii v regione BVSA [Multivariate forecast for the development of the situation in the MENA region]. Moscow, MGIMO-University Publ., 2014, 58 p.
  3. Fedorchenko A.V., Krylov A.V. [The phenomenon of the 'Islamic State']. Vestnik MGIMO-Universiteta = MGIMO-University Bulletin, 2015, no. 2, pp. 174–183. (In Russ.)
  4. Kuznetsov A.A. [The 'Islamic State in the context of political changes in the Middle East]. Vestnik MGIMO-Universiteta = MGIMO-University Bulletin, 2015, no. 2, pp. 184–192. (In Russ.)
  5. Isaev L.M., Korotaev A.V., Shishkina A.R. Faktory arabskoi vesny 2011 goda. V kn.: Arabskii mir posle arabskoi vesny [Factors of the Arab Spring 2011. In: Arab world after the Arab Spring]. Moscow, LENAND Publ., 2013, pp. 5–20.
  6. Grinevskii O.A. Islamskii ekstremizm i terroristicheskaya ugroza. V kn.: Rossiya v mnogoobrazii tsivilizatsii [Islamic extremism and terrorist threat. In: Russia in the diversity of civilizations]. Moscow, Ves' Mir Publ., 2011, pp. 141–166.
  7. Devlin J.C. Economics of the Middle East: Development Challenges. Series: World Scientific Lecture Notes in Economics, vol. 2. New Jersey, World Scientific Publishing Co. Pte. Ltd., 2016, 219 p.
  8. 'Islamskoe gosudarstvo': fenomen, evolyutsiya, perspektivy ['Islamic State': Phenomenon, Evolution, Prospects]. Moscow, MGIMO-University Publ., 2016, 44 p.
  9. 'Arabskii krizis' i ego mezhdunarodnye posledstviya ['Arab crisis' and its international consequences]. Moscow, LENAND Publ., 2014, 256 p.
  10. Sistemnyi monitoring global'nykh i regional'nykh riskov: Arabskii mir posle Arabskoi vesny [Systemic monitoring of global and regional risks: The Arab world after the Arab Spring]. Moscow, URSS Publ., 2013, 424 p.
  11. Bazueva E.V. [The gender criterion for assessing the efficiency of national and regional socio-economic systems development]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser.: Sotsial'nye nauki = Vestnik of Lobachevsky State University of Nizhny Novgorod. Series: Social Sciences, 2016, no. 2, pp. 9–16. (In Russ.)
  12. Mikroekonomika znanii [Microeconomics of knowledge]. Moscow, Ekonomika Publ., 2007, 208 p.
  13. Makarov V.L. Formirovanie ekonomiki znanii: kontseptsii i problemy. V kn.: Innovatsionnoe razvitie: ekonomika, intellektual'nye resursy, upravlenie znaniyami [Formation of the knowledge economy: Concepts and problems. In: Innovative development: economics, intellectual resources, knowledge management]. Moscow, INFRA-M Publ., 2009, pp. 11–26.
  14. Gorizonty innovatsionnoi ekonomiki v Rossii: Pravo, instituty, modeli [Horizons of the innovation-based economy in Russia: Law, institutions, models]. Moscow, LENAND Publ., 2010, 240 p.
  15. Kohonen T. Self-organized formation of topo1ogically correct feature maps. Bio1ogical Cybernetics, 1982, vol. 43(1), pp. 59–69. doi: 10.1007/BF00337288
  16. Kohonen T. The self-organizing map. Proceedings of the Institute of Electrical and Electronics Engineers, 1990, vol. 78, iss. 9, pp. 1464–1480.
  17. Debok G., Kohonen T. Analiz finansovykh dannykh s pomoshch'yu samoorganizuyushchikhsya kart [Analyzing Financial Data Using Self-Organizing Maps]. Moscow, Al'pina Publ., 2001, 317 p.
  18. Osovskii S. Neironnye seti dlya obrabotki informatsii [Neural networks for information processing]. Moscow, Finansy i statistika Publ., 2002, 344 p.
  19. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika [Artificial neural networks. Theory and practice]. Moscow, Goryachaya liniya – Telekom Publ., 2002, 382 p.
  20. Medvedev V.S., Potemkin V.G. Neironnye seti. MATLAB 6 [Neural networks. MATLAB 6]. Moscow, DIALOG–MIFI Publ., 2002, 122 p.
  21. Khaikin S. Neironnye seti: polnyi kurs [Neural networks: A complete course]. Moscow, Vil'yams Publ., 2006, 1104 p.
  22. Sinha S., Singh T.N., Singh V.K., Verma A.K. Epoch Determination for Neural Network by Self-Organized Map (SOM). Computational Geosciences, 2010, vol. 14, iss. 1, pp. 199–206. doi: 10.1007/s10596-009-9143-0
  23. Ghaseminezhad M.H., Karami A. A Novel Self-Organizing Map (SOM) Neural Network for Discrete Groups of Data Clustering. Applied Soft Computing, 2011, vol. 11, no. 4, pp. 3771–3778.
  24. Carboni O.A., Russu P. Assessing Regional Wellbeing in Italy: An Application of Malmquist–DEA and Self-Organizing Map Neural Clustering. Social Indicators Research, 2015, vol. 122, iss. 3, pp. 677–700. doi: 10.1007/s11205-014-0722-7
  25. Rende S., Donduran M. Neighborhoods in Development: Human Development Index and Self-Organizing Maps. Social Indicators Research, 2013, vol. 110, iss. 2, pp. 721–734. doi: 10.1007/s11205-011-9955-x

View all articles of issue


ISSN 2311-8725 (Online)
ISSN 2073-039X (Print)

Journal current issue

Vol. 20, Iss. 2
February 2021