+7 495 989 9610, 9am6pm (GMT+3), Monday – Friday
ИД «Финансы и кредит»

JOURNALS

  

FOR AUTHORS

  

SUBSCRIBE

    
Finance and Credit
 

Abstracting and Indexing

РИНЦ
Referativny Zhurnal VINITI RAS
Worldcat
LCCN Permalink
Google Scholar

Online available

EBSCOhost
Eastview
Elibrary
Biblioclub

Archiving

Cyberleninka (24 month OA embargo)

Stochastic optimization of economic, financial, information, and logistics inter-cluster cooperation

Vol. 26, Iss. 9, SEPTEMBER 2020

Received: 19 June 2020

Received in revised form: 3 July 2020

Accepted: 17 July 2020

Available online: 29 September 2020

Subject Heading: INVESTING

JEL Classification: C63, E17, O21, O36

Pages: 1928–1950

https://doi.org/10.24891/fc.26.9.1928

Yashin S.N. National Research Lobachevsky State University of Nizhny Novgorod (UNN), Nizhny Novgorod, Russian Federation
jashinsn@yandex.ru

https://orcid.org/0000-0002-7182-2808

Trifonov Yu.V. National Research Lobachevsky State University of Nizhny Novgorod (UNN), Nizhny Novgorod, Russian Federation
kei@ef.unn.ru

https://orcid.org/0000-0002-4745-0004

Koshelev E.V. National Research Lobachevsky State University of Nizhny Novgorod (UNN), Nizhny Novgorod, Russian Federation
ekoshelev@yandex.ru

https://orcid.org/0000-0001-5290-7913

Subject. This article deals with the simulation technologies based on the principles of stochastic optimization. They can bring a significant financial effect in the planning of investment development of both individual innovation and industrial clusters and federal districts of the country.
Objectives. The article aims to investigate the mechanisms of inter-cluster cooperation within a single district.
Methods. For the analysis, we used a stochastic optimization model in view of economic, financial, information, and logistics inter-cluster cooperation within a single federal district.
Results. The considered stochastic optimization model of economic, financial, information, and logistics inter-cluster cooperation shows that the increase in fixed investment does not always cause population growth in the federal district regions.
Conclusions. The use of a digital twin mechanism of inter-cluster cooperation can help avoid premature unreasonable public policy management decisions regarding the further development of innovation and industrial clusters.

Keywords: stochastic optimization, digital twin, inter-cluster cooperation

References:

  1. Yashin S.N., Koshelev E.V., Kostrigin R.V. [Compilation of linear functional of the value of the innovation and industrial cluster for the region]. Upravlenie ekonomicheskimi sistemami: elektronnyi nauchnyi zhurnal, 2019, no. 12. (In Russ.) URL: Link
  2. Izmakova O.A. [Randomized self-learning algorithms to tune associative neural networks]. Stokhasticheskaya optimizatsiya v informatike = Stochastic Optimization in Computer Science, 2005, vol. 1, no. 1, pp. 81–102. URL: Link (In Russ.)
  3. Sakalauskas L. [Nonlinear stochastic optimization by Monte Carlo method]. Stokhasticheskaya optimizatsiya v informatike = Stochastic Optimization in Computer Science, 2005, vol. 1, no. 1, pp. 190–205. URL: Link (In Russ.)
  4. Sysoev S.S. [Randomized stochastic optimization algorithms, quantum computers, artificial intelligence]. Stokhasticheskaya optimizatsiya v informatike = Stochastic Optimization in Computer Science, 2005, vol. 1, no. 1, pp. 206–221. URL: Link (In Russ.)
  5. Gasnikov A.V., Dvurechenskii P.E., Nesterov Yu.E. [Stochastic gradient methods with inexact oracle]. Trudy Moskovskogo fiziko-tekhnicheskogo instituta = Proceedings of MIPT, 2016, vol. 8, no. 1, pp. 41–91. URL: Link (In Russ.)
  6. Conn A.R., Gould N.I.M., Toint Ph.L. A Globally Convergent Augmented Lagrangian Algorithm for Optimization with General Constraints and Simple Bounds. SIAM Journal on Numerical Analysis, 1991, vol. 28, no. 2, pp. 545–572. URL: Link
  7. Conn A.R., Gould N.I.M., Toint Ph.L. A Globally Convergent Lagrangian Barrier Algorithm for Optimization with General Inequality Constraints and Simple Bounds. Mathematics of Computation, 1997, vol. 66, no. 217, pp. 261–288. URL: Link
  8. Kolda T.G., Lewis R.M., Torczon V. A Generating Set Direct Search Augmented Lagrangian Algorithm for Optimization with a Combination of General and Linear Constraints. Technical Report SAND2006-5315. Oak Ridge, Sandia National Laboratories, August 2006, 44 p. URL: Link
  9. Hooke R., Jeeves T.A. “Direct Search” Solution of Numerical and Statistical Problems. Journal of the ACM, 1961, vol. 8, no. 2, pp. 212–229. URL: Link
  10. Powell M.J.D. On Search Directions for Minimization Algorithms. Mathematical Programming, 1973, vol. 4, pp. 193–201. URL: Link
  11. Davidon W.C. Variable Metric Method for Minimization. SIAM Journal on Optimization, 1991, vol. 1, iss. 1, pp. 1–17. URL: Link
  12. McKinnon K.I.M. Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point. SIAM Journal on Optimization, 1998, vol. 9, iss. 1, pp. 148–158. URL: Link
  13. Torczon V. On the Convergence of Pattern Search Algorithms. SIAM Journal on Optimization, 1997, vol. 7, iss. 1, pp. 1–25. URL: Link
  14. Dolan E.D., Lewis R.M., Torczon V. On the Local Convergence of Pattern Search. SIAM Journal on Optimization, 2003, vol. 14, iss. 2, pp. 567–583. URL: Link
  15. Audet C., Dennis J.E. Jr. Analysis of Generalized Pattern Searches. SIAM Journal on Optimization, 2003, vol. 13, iss. 3, pp. 889–903. URL: Link
  16. Kolda T.G., Lewis R.M., Torczon V. Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods. SIAM Review, 2003, vol. 45, iss. 3, pp. 385–482. URL: Link
  17. Lewis R.M., Shepherd A., Torczon V. Implementing Generating Set Search Methods for Linearly Constrained Minimization. SIAM Journal on Scientific Computing, 2007, vol. 29, iss. 6, pp. 2507–2530. URL: Link
  18. Audet C., Dennis J.E. Jr. Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on Optimization, 2006, vol. 17, iss. 1, pp. 188–217. URL: Link
  19. Abramson M.A., Audet Ch., Dennis J.E. Jr., Digabel S.L. OrthoMADS: A Deterministic MADS Instance with Orthogonal Directions. SIAM Journal on Optimization, 2009, vol. 20, iss. 2, pp. 948–966. URL: Link
  20. Hendra A., Adinugroho S. Matlab Solvers Benchmark for ABB's Model Predictive Control Optimization. Speed vs Result. Project in Computational Science: Report. Uppsala, Uppsala Universitet, January 2015, 49 p. URL: Link
  21. Damodaran A. Investment Valuation: Tools and Techniques for Determining the Value of Any Asset. New York, John Wiley & Sons, Inc., 2002, 992 p.
  22. Babynin M.S., Zhadan V.G. [A primal interior point method for the linear semidefinite programming problem]. Zh. Vychisl. Mat. Mat. Fiz., 2008, vol. 48, no. 10, pp. 1780–1801. URL: Link (In Russ.)

View all articles of issue

 

ISSN 2311-8709 (Online)
ISSN 2071-4688 (Print)

Journal current issue

Vol. 26, Iss. 9
September 2020

Archive