Regional Economics: Theory and Practice
 

Mathematical modeling of the sustainable socio-environmental and economic development of a region using statistical data: The Kemerovo oblast case study

Vol. 15, Iss. 8, AUGUST 2017

Received: 12 May 2017

Received in revised form: 29 May 2017

Accepted: 15 June 2017

Available online: 15 August 2017

Subject Heading: ECONOMIC-MATHEMATICAL MODELING

JEL Classification: C32, C41, Q56

Pages: 1552–1564

https://doi.org/10.24891/re.15.8.1552

Chernova E.S. Kemerovo State University, Kemerovo, Russian Federation elvangie@mail.ru

Importance This article examines the possibility of using best management and data analysis theories to build a mathematical model for the sustainable development of a region, regarding the Kemerovo oblast as a case study.
Objectives Using statistics, the article aims to develop a mathematical model of sustainable socio-environmental and economic development of a region in the form of a discrete problem of optimum control, and perform a comprehensive analysis of it.
Methods For the study, I used the methods of optimal control theory, systems analysis, mathematical statistics, regression analysis, and the optimization.
Results The paper presents a mathematical model of sustainable development of a region in the form of a discrete task of optimal management with many quality criteria, adapted for the study of the socio-ecological and economic dynamics of the Russian Federation subject.
Conclusions Mathematical models with statistics data control parameters are an appropriate tool to study sustainable development at the regional level, taking into account the current trends of social, economic and environmental indicators. Using the statistics of an individual region as a model's basis takes into account the region's specificity, the conditions and constraints that must be met in order to implement a scenario of sustainable development, and makes it possible and reasonable to apply this approach as a reliable apparatus in making long-term management decisions.

Keywords: sustainable development, mathematical model, optimal control, social, economic and ecological system

References:

  1. Alferova T.V., Tret'yakova E.A. [Conceptual modeling defining the category of sustainable development]. Zhurnal ekonomicheskoi teorii = Russian Journal of Economic Theory, 2012, no. 4, pp. 46–52. (In Russ.)
  2. Afonichkina E.A. Modelirovanie strategii ustoichivogo razvitiya ekonomicheskikh sistem [Modeling the sustainable development strategy of economic systems]. Samara, Samara Science Center of RAS Publ., 2016, 230 p.
  3. Mkrtchyan G.M. [Modelling of conditions of the trajectory of sustainable development taking into account payments for land]. Mir ekonomiki i upravleniya = The World of Economics and Management, 2015, vol. 15, no. 2, pp. 69–75. URL: https://cyberleninka.ru/article/n/modelirovanie-usloviy-traektorii-ustoychivogo-razvitiya-s-uchetom-platezhey-za-zemlyu (In Russ.)
  4. Samkov T.L. [Sustainable development modeling of industry systems and regions]. Vestnik SibGUTI, 2015, no. 4, pp. 47–54. URL: http://vestnik.sibsutis.ru/uploads/1452673987_5080.pdf (In Russ.)
  5. Starkova M.M., Lyuter E.V., Gusarova Yu.V. [Modeling of sustainable development of industrial sectors]. Vestnik sovremennoi nauki = Bulletin of Modern Science, 2016, no. 10-1, pp. 47–51. (In Russ.)
  6. Khasanova V.N., Karimov M.G., Vasil'eva R.V. [Modern approaches to the modeling of indicators of sustainable development]. Vestnik nauchnykh konferentsii = Bulletin of Scientific Conferences, 2015, no. 3-3, pp. 137–140. URL: http://ucom.ru/doc/cn.2015.03.03.pdf (In Russ.)
  7. Hersh M. Mathematical Modelling for Sustainable Development. Springer-Verlag Berlin Heidelberg, 2005, 557 p. doi: 10.1007/3-540-31224-2
  8. Aivazyan S.A., Brodskii B.E. [Macroecometric modeling: modern trends, problems, an example of the econometric model of the Russian economy]. Prikladnaya ekonometrika = Applied Econometrics, 2006, no. 2, pp. 85–111. URL: https://cyberleninka.ru/article/n/makroekonometricheskoe-modelirovanie-podhody-problemy-primer-ekonometricheskoy-modeli-rossiyskoy-ekonomiki (In Russ.)
  9. Bobylev S.N. Indikatory ustoichivogo razvitiya: regional'noe izmerenie. Posobie po regional'noi ekologicheskoi politike [Indicators of sustainable development: a regional dimension. Regional Environmental Policy Manual]. Moscow, Akropol' Publ., 2007, 60 p.
  10. Tarasova N.P., Kruchina E.B. Indeksy i indikatory ustoichivogo razvitiya. Ustoichivoe razvitie: resursy Rossii: monografiya [Indices and indicators of sustainable development. Sustainable development: The Resources of Russia: a monograph]. Moscow, Dmitry Mendeleev University Publ., 2004, pp. 43–79.
  11. Danilov N.N. [Sustainable development: A methodology for mathematical research]. Vestnik KemGU. Matematika = Bulletin of Kemerovo State University. Mathematics, 2000, no. 4, pp. 5–15. (In Russ.)
  12. Petrosyan L.A., Danilov N.N. Kooperativnye differentsial'nye igry i ikh prilozheniya [Cooperative differential games and their applications]. Tomsk, Tomsk University Publ., 1985, 276 p.
  13. Meshechkin V.V., Bogatyreva N.I. [Mathematical modeling of the problem concerning increasing of population health level in Kemerovo region using integral indicator]. Vestnik KemGU = Bulletin of Kemerovo State University, 2011, no. 3, pp. 76–85. URL: https://cyberleninka.ru/article/n/matematicheskoe-modelirovanie-zadachi-povysheniya-urovnya-zdorovya-naseleniya-kemerovskoy-oblasti-s-primeneniem-integralnogo (In Russ.)
  14. Chernova E.S. [Determination principles of region finite state as a target point of sustainable development using game-theoretical approach]. Baikal Research Journal, 2010, no. 6, p. 20. URL: http://strategy.isea.ru/files/s1/113_Chernova.pdf (In Russ.)
  15. Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 1965, vol. 52, no. 3/4, pp. 591–611. doi: 10.2307/2333709
  16. Spearman C. The Proof and Measurement of Association between Two Things. The American Journal of Psychology, 1904, vol. 15, no. 1, pp. 72–101. doi: 10.2307/1412159
  17. Gilbert N., Troitzsch K.G. Simulation for the Social Scientist. Second Edition. Maidenhead, Open University Press, 2005, 312 p.

View all articles of issue

 

ISSN 2311-8733 (Online)
ISSN 2073-1477 (Print)

Journal current issue

Vol. 15, Iss. 9
September 2017

Archive