Economic Analysis: Theory and Practice
 

Increasing the efficiency of exposure to bankruptcy analysis under econometric methods

Vol. 17, Iss. 6, JUNE 2018

Received: 28 March 2018

Received in revised form: 2 April 2018

Accepted: 16 April 2018

Available online: 30 June 2018

Subject Heading: MATHEMATICAL METHODS AND MODELS

JEL Classification: C01, C13, G33, G34

Pages: 1178–1196

https://doi.org/10.24891/ea.17.6.1178

Bukharin S.V. Voronezh State University of Engineering Technologies, Voronezh, Russian Federation
svbuharin@mail.ru

https://orcid.org/0000-0003-2997-3634

Paraskevich V.V. Voronezh State University of Engineering Technologies, Voronezh, Russian Federation
viktoriyparaskevic@yandex.ru

https://orcid.org/0000-0003-2598-6673

Importance The article analyzes the methodology for comparing the results of various methods to assess bankruptcy exposure.
Objectives The purpose of the study is to develop a single approach to comparing the results of various methods through the introduction of a composite index of financial standing on the basis of modern econometric methods.
Methods We employ methods of the theory of expert systems, fuzzy sets, the analytic hierarchy process by Thomas Saaty, rank statistician, correlation analysis.
Results Using the theory of expert systems, we offer a single composite index of enterprise financial condition; based on the modern method of analytic hierarchy process for the W. Beaver method, which traditionally estimates only separate attributes, we introduce an integrated rating number; for the R.S. Saifullin and G.G. Kadykov method, we introduce the vector of priorities to account for various importance of attributes in the rating. The findings show that the results of these three methods comply with the introduced composite index and can be compared from a unified position.
Conclusions The introduced composite index of financial condition enabled to compare the results of three widespread methods of exposure to bankruptcy analysis on a uniform methodological basis. The paper shows that the said three methods provide a qualitatively identical picture of separating the enterprises into 'normal' and 'unsatisfactory'.

Keywords: bankruptcy, rating, scoring, correlation

References:

  1. Novoselova S.A., Istomina O.A. [Financial analysis at bankruptcy: Legislative aspects]. Vestnik Saratovskogo gosagrouniversiteta im. N.I. Vavilova = The Bulletin of Saratov State Agrarian University in honor of N.I. Vavilov, 2014, no. 8, pp. 82–86. (In Russ.)
  2. Fedorova E.A., Chukhlantseva M.A., Chekrizov D.V. [Assessing the efficiency of enterprise bankruptcy prediction on the basis of the Russian legislation]. Finansy i kredit = Finance and Credit, 2017, vol. 23, iss. 13, pp. 732–746. URL: https://doi.org/10.24891/fc.23.13.732 (In Russ.)
  3. Anisimov A., Bashmakov D., Ustyukova V. [Current problems of legal regulation of rural producers' bankruptcy]. Khozyaistvo i pravo = Business and Law, 2013, no. 4, pp. 64–72. (In Russ.)
  4. Bordeianu G.D. et al. Analysis Models of the Bankruptcy Risk. Economy Transdisciplinarity Cognition, 2011, vol. 14, iss. 1, pp. 248–259.
  5. Khaidarshina G.A. [An integrated model to assess the risk of bankruptcy]. Finansy = Finance, 2009, no. 2, pp. 67–69. (In Russ.)
  6. Aleksandrova M.V., Proskurina Z.B. [Specifics of applying various techniques to prevent bankruptcy of domestic enterprises]. Ekonomika, sotsiologiya i pravo = Economics, Sociology and Law, 2014, no. 3, pp. 12–14. (In Russ.)
  7. Lyubushin N.P., Cherkasova O.G. [Integration of approaches to analyze business entities' sustainability]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2013, no. 34, pp. 2–11. URL: https://cyberleninka.ru/article/v/integratsiya-podhodov-k-analizu-ustoychivosti-hozyaystvuyuschih-subektov (In Russ.)
  8. Lyubushin N.P., Babicheva N.E., Galushkina A.I., Kozlova L.V. [Analysis of methods and models to evaluate the financial stability of organizations]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2010, no. 1, pp. 3–11. URL: https://cyberleninka.ru/article/v/analiz-metodov-i-modeley-otsenki-finansovoy-ustoychivosti-organizatsiy (In Russ.)
  9. Boikova A.V. [Predicting of bankruptcy at the enterprise: Approaches and models]. Ekonomicheskie i gumanitarnye issledovaniya regionov, 2010, no. 4, pp. 106–117. (In Russ.)
  10. Karpunin A. [Developing the techniques to forecast the risk of bankruptcy of organizations and their application in agriculture]. RISK: Resursy, Informatsiya, Snabzhenie, Konkurentsiya = RISK: Resources, Information, Supply, Competition, 2012, no. 4, pp. 397–401. (In Russ.)
  11. Rygin V.E. [A model to assess the risk of bankruptcy of metal manufacturers]. Vestnik Yuzhno-Rossiiskogo gosudarstvennogo tekhnicheskogo universiteta (Novocherkasskogo politekhnicheskogo instituta). Ser.: Sotsial'no-ekonomicheskie nauki, 2013, no. 5, pp. 84–91. (In Russ.)
  12. Bogomolova I.P., Rukin B.P., Tepikina E.I. [Assessing the financial stability and solvency of industrial organizations]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2006, no. 19, pp. 5–6. URL: https://cyberleninka.ru/article/v/otsenka-finansovoy-ustoychivosti-i-platezhesposobnosti-promyshlennyh-organizatsiy (In Russ.)
  13. Berdnikov V.V., Gavel' O.Yu. [Comparative analysis of approaches to forecast probability of bankruptcy of commercial organizations]. Nauka i Mir = Science and World, 2014, no. 8, pp. 92–96. (In Russ.)
  14. Prudnikov A.G. et al. [Problems of rating of financial activity of managing subjects of agrarian sphere]. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 2016, no. 115(01), pp. 20–33. (In Russ.) URL: https://cyberleninka.ru/article/v/problemy-reytingovoy-otsenki-finansovoy-deyatelnosti-hozyaystvuyuschih-subektov-agrarnoy-sfery
  15. Bukharin S.V., Mel'nikov A.V. Klasterno-ierarkhicheskie metody ekspertizy ekonomicheskikh ob"ektov: monografiya [Cluster-and-hierarchical methods of economic object examination: a monograph]. Voronezh, Nauchnaya kniga Publ., 2012, 276 p.
  16. Witten I.H., Frank E., Hall M.A. Data Mining: Practical Machine Learning Tools and Techniques. Burlington, Massachusetts, Morgan Kaufmann, 2011, 664 p.
  17. Saaty T.L. Prinyatie reshenii pri zavisimostyakh i obratnykh svyazyakh: analiticheskie seti [Decision Making with Dependence and Feedback: The Analytic Network Process]. Moscow, LKI Publ., 2008, 360 p.
  18. Saaty T.L. Relative Measurement and Its Generalization in Decision Making. Why pairwise comparisons are central in Mathematics for the measurement of intangible factors. The analytic hierarchy/network process. RACSAM- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2008, vol. 102, iss. 2, pp. 251–318. URL: https://doi.org/10.1007/BF03191825
  19. Khorev A.I., Barkalova I.I., Bukharin S.V. [Generalized indicator and classification of structures of the capital of the industrial enterprises]. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii = Proceedings of the Voronezh State University of Engineering Technologies, 2017, vol. 79, no. 3, pp. 187–193. URL: http://dx.doi.org/10.20914/2310-1202-2017-3-187-193 (In Russ.)

View all articles of issue

 

ISSN 2311-8725 (Online)
ISSN 2073-039X (Print)

Journal current issue

Vol. 17, Iss. 6
June 2018

Archive